Comparison of single-shot echo-planar and line scan protocols for diffusion tensor imaging.
نویسندگان
چکیده
RATIONALE AND OBJECTIVES Both single-shot diffusion-weighted echo-planar imaging (EPI) and line scan diffusion imaging (LSDI) can be used to obtain magnetic resonance diffusion tensor data and to calculate directionally invariant diffusion anisotropy indices, ie, indirect measures of the organization and coherence of white matter fibers in the brain. To date, there has been no comparison of EPI and LSDI. Because EPI is the most commonly used technique for acquiring diffusion tensor data, it is important to understand the limitations and advantages of LSDI relative to EPI. MATERIALS AND METHODS Five healthy volunteers underwent EPI and LSDI diffusion on a 1.5 Tesla magnet (General Electric Medical Systems, Milwaukee, WI). Four-mm thick coronal sections, covering the entire brain, were obtained. In addition, one subject was tested with both sequences over four sessions. For each image voxel, eigenvectors and eigenvalues of the diffusion tensor were calculated, and fractional anisotropy (FA) was derived. Several regions of interest were delineated, and for each, mean FA and estimated mean standard deviation were calculated and compared. RESULTS Results showed no significant differences between EPI and LSDI for mean FA for the five subjects. When intersession reproducibility for one subject was evaluated, there was a significant difference between EPI and LSDI in FA for the corpus callosum and the right uncinate fasciculus. Moreover, errors associated with each FA measure were larger for EPI than for LSDI. CONCLUSION Results indicate that both EPI- and LSDI-derived FA measures are sufficiently robust. However, when higher accuracy is needed, LSDI provides smaller error and smaller inter-subject and inter-session variability than EPI.
منابع مشابه
Comparison of Single-Shot Echo-Planar and Line Scan Protocols for Diffusion Tensor Imaging1
Rationale and Objectives. Both single-shot diffusion-weighted echo-planar imaging (EPI) and line scan diffusion imaging (LSDI) can be used to obtain magnetic resonance diffusion tensor data and to calculate directionally invariant diffusion anisotropy indices, ie, indirect measures of the organization and coherence of white matter fibers in the brain. To date, there has been no comparison of EP...
متن کاملDiffusion-weighted single-shot line scan imaging of the human brain.
Single-shot line scan imaging (LSI) was adapted to diffusion-weighted (DW) MRI by replacing the initial 90 degrees radiofrequency pulse of the underlying high-speed stimulated echo sequence by a DW spin-echo preparation period. Implementation on a 2. 0 T whole-body MRI system yielded DW images of the human brain with b factors of 750 s mm(-2) and total imaging times of about 500 ms either for a...
متن کاملDiffusion tensor mapping of the human brain using single-shot line scan imaging.
A recently developed single-shot line scan imaging technique for diffusion measurements (Finsterbusch and Frahm, Magn Reson Med 1999;42:772-778) was extended to full diffusion tensor mapping of the human brain. Because the sequence acquires stimulated echoes from individual columns of magnetization ("lines"), the approach is affected neither by spatial aliasing when studying inner volumes nor b...
متن کاملDiffusion-tensor MR imaging of the human brain with gradient- and spin-echo readout: technical note.
Diffusion-tensor MR imaging of the brain is an objective method that can measure diffusion of water in tissue noninvasively. Five adult volunteers participated in this study that was performed to evaluate the potential of gradient- and spin-echo readout for diffusion-tensor imaging by comparing it with single-shot spin-echo echo-planar imaging. Gradient- and spin-echo readout provides comparabl...
متن کاملRapid isotropic diffusion mapping without susceptibility artifacts: whole brain studies using diffusion-weighted single-shot STEAM MR imaging.
A subsecond magnetic resonance imaging (MRI) technique for isotropic diffusion mapping is described which, in contrast to echo-planar imaging (EPI), is insensitive to resonance offsets, i.e., tissue susceptibility differences, magnetic field inhomogeneities, and chemical shifts. It combines a diffusion-weighted (DW) spin-echo preparation period and a high-speed stimulated echo acquisition mode ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Academic radiology
دوره 11 2 شماره
صفحات -
تاریخ انتشار 2004